Friday, February 18, 2011

Dispatch From Barcelona: Mobile Chips Of Change -- InformationWeek

Sent to you by SangiovanniArt via Google Fast Flip:



Dispatch From Barcelona: Mobile Chips Of Change -- InformationWeek

Dispatch From Barcelona: Mobile Chips Of Change New chipsets are enabling mobile computing in every aspect of our lives. Here are a few of the latest developments from this week's Mobile World Congress. Texas Instruments last week announced its OMAP 5 architecture, and both Nvidia and Qualcomm followed quickly, announcing next-generation mobile processors this week at Mobile World Congress. Even as today's smartphones and tablets capture video in high definition and render graphics almost beyond the quality the eye can process, within a year these chipsets will allow phones to do even more. It hardly seems possible that just recently laptops were getting dual-core and quad-core processors. A year ago, Google CEO Eric Schmidt noted during his keynote at Mobile World Congress in Barcelona that the processing power of mobile phones was superior to the computing systems Sun was making earlier in his career. Not long ago, chip designers were talking about dual-core 1-Gz processing; it seemed far-fetched, but already CIO: HP ProLiant G7 Servers: 4P Performance at 2P Economics Secure Boot Requirements and Capabilities in Embedded Systems Virtual Servers, Real Risks Data Warehouse Appliance Promises Database Transparence, Mixed BI Workload, Massive Scalability , code named Kal El. It's a quad-core CPU with 12-core graphics processing. The company says its OEM customers (tablets are the target here) will have product by August. The demo showed high-resolution video streamed onto a tablet-sized display, without the system breaking a sweat. Qualcomm unveiled the latest in its Snapdragon processor line, code-named Krait, which will come in single-, dual- and quad-core versions, with each core running at a mind-numbing 2.5 GHz. This architecture packs in the Adreno GPU series, which includes four 3D cores for 3D video capture and playback. There's much more to Krait, including the ability to control each core, the integration of multiple radio technologies, and improvement in power efficiency. Texas Instruments gained a week in the spotlight by announcing its OMAP 5 chipset before Mobile World Congress, but since it doesn't include a quad-core version, it spent a decent amount of time in Barcelona explaining why quad-core announcements are just surface-level hype. Indeed, this must have been just what TI was anticipating, because in its own announcement, OMAP product line manager Brian Carlson had repeatedly emphasized that next-generation chip architectures aren't a horse race, by which he meant that there are other phone capabilities to be optimized. Carlson noted that Qualcomm's four A9 cores are served by a mere 1 MB of L2 cache, which is, he said, where you want all of the processing to be. TI's two cores are served by 2 MB of L2 cache. Carlson claimed that in real-world scenarios (not raw processor benchmarks), TI's design will perform better. He also said TI's design has two memory interfaces, whereas Qualcomm's has one, introducing another potential bottleneck. But this is a battleground the device makers will fight on. For us, the more interesting part is what these new designs are capable of. TI spent a lot of time talking about computational photography, for things like improved facial recognition, leading to advances like real-time face search -- you know, when you want to see if that really is Angelina Jolie in Central Park (OK, maybe for surveillance purposes, too). Dedicated processing for 3D also holds plenty of promise. TI is already showcasing that capability in LG's new Optimus smartphone, which captures and plays back 3D video. The ability to detect images in low light, filter noise during video capture, recognize gestures in the air, and project images are all things that OMAP is already enabling--and will accelerate in OMAP 5. Carlson said we'll see projection built into devices like smartphones within the next several months. OMAP5 end products will likely be around for the 2012 holiday season. In Barcelona, there was plenty of chip action beyond the main mobile processor. NXP demonstrated NFC chips, which can store data and allow communication between, say, a piece of merchandise and a smartphone. These chips have been around for awhile, but late last year Google put one into its new Nexus S phone, and other device makers are following suit. NXP is putting NFC chips everywhere, including in business cards and watches in order to store and transfer things like contact data....

Read full story